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ABSTRACT

The SPM equation has been recoded for the IBM-7090.

Both theoretical analysis and some numerical results are given

and discussed.

This teebnical documentary revort has been reviewed and is
anDxroved.

RI J. VO• ER Capt, USAF

Ciief, Radiation Branch

Physics Laboratory
Directorate of Materials & Processes
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I. Introduction

The aim of the present program was to program the

Stochastic Process Method (SP) 1 for neutron problems and to

investigate the method both theoretically and numerically. We

have been able to analyze the problem sufficiently to determine

proper source and interface conditions, as well as appropriate

methods of treating scattering by hydrogen and inelastic

scattering by heavy elements within the spirit of the method.

In this report are presented the SPM equations with

boundary conditions, a discussion of some of the results, and

operating instructions for the IBM-7090 SPM code and for the

auxiliary input code GENUC.

Manuscript released by the authors April 1962 for publication as an ASD

Technical Documentary Report.
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II. Analysis of the SPM Equation

A. Primitive SPM Equation for Variable Cross-Sections

An SPM equation can be derived for cross sections which vary

in space and energy. The previous derivation was valid only for

constant cross sections. We now derive the new result.

The integral Boltzmann equation can be written

o(x,u)0(xu) = 4o(X,U) + 2if x du'S dtt dL' a(x,u) H (XX.)

x1 -21

x exp - a(x",u)dx dv do 8 -ul-L(v x- x- u -i Lo]

SHere

Heex =distance from source plane

u = lethargy

L = cosine of angle with normal to source plane

v = cosine of scattering angle

0 = azimuthal angle of scattering

a(x,u) = total macroscopic cross section at x and u

as(x,u,v) = macroscopic differential elastic scattering

cross section at x and u for scattering through an angle

whose cosine is v, per unit solid angle

0(x,u,M.) - flux at (x,u,p) per unit lethargy and solid angle
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L(v) - increase in lethargy accompanying scattering through

an angle whose cosine is v

*o(xU)= density of first collisions at x and u per unit

volume, time, and lethargy

Primed variables refer to the situation before collision.

Also, 0(x,u) is the total flux at x and u per unit lethargy:

0(xu) 2 0(x,u,4) dp (2)

and H(Q) is a step function:

H(Q)=i, > 0

=0, < 0. (3)

Let the total number of mean free paths at lethargy u between

0 and x be

s(x,u) = a(x",u)du". (4)

s is thus a function of x with parameter u and conversely, x is a

function of s. We will also use the notation

s' s(x', u). (5)

Let

(is(x',uI'v) u0(x,,u',,,) = f(x'(s'), u',u,v,,V') = g(s').

as(x',u) (6)

3.



By Taylor's expansion,

g(s') Y, -( 5 t- 5 )f -s g(s), (7)
n=0 n!

where by (6),

a (x,u',v)

g(s) -f(x(s), ut,u,v,P.L) =as~x,u) 0(~'i'. (8)

We have also

Then the x' - integral in (1) can be written

L(-U H( )exp{ a(x",u)dx` "3UV)Ox~l~l~x

UI ~ 0'0 -
Sa (x',u,v)0(,uLdx

X,(,~u a(x',u) H(-S' e s -Axa~x' uv)

a ~ (x )5d LLI -a a5 (x',u) 0x,'i'

00 C,- -Sna

y a(x, U) n 0  SIH(AiAe (S (S')-gs =

n=O, 
(10

The second equality in (10) holds by virtue of (4), (6), (7),

and (9). But by (4),

ann

O(x,u) -g(s) - (x,u) LaO J~~~i~0(x, u',I)=
F- n

L~~O~u] a8S(x,u',v)0(x,u',9iiYi., (12)



Inserting (12) into (10) and then (10) into (1), we have

(x, u) 0(x,u) = Po4xu) + 27rno- dI0.S dvS d{ d.t' du" x

n=O 0 - 0

We now expand os about u:

%(x,u,,v)0(x,u',,.,) = L •- u-)m •m a(x,u,v) 4x, u)0(x,u)M4pJx,t.
m=Omu • s(X'u) "

(14)

where as(X,U) is the elastic scattering cross section at x and u:

o(x,u) = d15)

s1

and

M(I±' x, u) __•~,' (16)

C Ux, u)

Inserting (14) into (13), integrating over u' and (, and then

dropping the prime on es', we have the SPM equation:

ci~x, u) = V'o(x,u) +

•' 0 (1m+n 1 •am=O n=o m L (xu) Cmn (, u, v ( 1)

(17)

s s

and

M GoXU) O(Xi,4')(16



where

Cmn (x, u)=
mnnSi O uv)

-27'iv) - dvO --
l(18)

Equations (17) and (18) are precisely the same relations as for constant

cross sections, except that now we must make sure that the a(x,u) are

placed as given in (17), since a no longer commutes with the derivatives.

If the medium consists of a number of nuclides, each has its own

Cmn. The appropriate generalization retains eq. (17) with Cmn defined

by the relation

Cmnas - .Cmn 1  s (19)

where

i th nuclidea = macroscopic scattering cross section for i-
i 

ias = . aS

and is defined by eq. (19) with the cross sections asi being used.mn d

Note that Coo = 1.

B. The Truncated SPM Equation and the Expression for the Current

To second order in both x and u, the SPM equation (17) reduces

in the absence of a source ?p to

I •2 • 1 o 5 + i•~ 0 a5(a-as)O T- cl0'o¢ + C2oaso - X Col Os + 0 •20Os+

+ - 02 0 (20)

Y Z-Xj M 7 =1 22 6

)a



It was shown in the original summary reportI that the current J

obeys the equation

ýJ C- CO H)- m+n I n
-- GXU 6uCm as€, (•

m=O n=l m! x- ud uTm

where we have used the general form (17) of the SPM equation.

In the order to which we are truncating, we can then write

i E + 6 i + 2_ . C I . 2

0 "Uc x _ 002  u 1 Cll - j C 1 2  Y C 2 1

+ 1 z 1 2a C s22

Now let

"C s J (23)

ml

v is defined here somewhat differently from the way in which it wasm

defined previously.

Then
2i1 v (viaj + I•

- (l-vo)J -- (v• J) + 2  (v 2 aJ) =

1x -j 1 r 0 (24)i -)i a# •u (c12 as0) +' • -u (C22 as¢0(24
[C-• 02 "' C1 ' - 2 c

Suppose that successively higher u-derivatives correspond to

successively higher powers of some small parameter I. Thus if some

quantity f is of order unity [0(1)1

anf 0( )n)

aun

Expand J in orders of N such that Jn = O(Wn). Then to second order,

J JO + J1 + J 2* (25)
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Again to second order, (24) becomes;

-(1-vo)(Jo+ J 1 + J 2 ) - + 1 2 (

0 01 2) F2 1=

"u(Ci2as)+ 62 (C22as0)J (26)

Then

(1-V )JO C 1 C (27)
- (a-Vo)J°-= •3F • 0 2 Cs(

(1-V) 1 6 71 a j ) = (28)"0 (lo) F - r •u 0Vl 0o = "F 'x- F -Ju C12 'o(8

.1 6 1 62 1 6 1 62

"("Vo)2" •' (va) + (v 2 °J) = ' " C2 2 F"0.

(29)

From eqs. (27)-(29), we get

1 1 6 1 C0a (30)o= T:--v-o "FNa 02s

1 0' a " 2 + •" (31)

1 1 [, v2 U 1 (0+
J2 - a ;' 22s u =- C022sa +

3a T IIc) C 12 as0 + u- r- -T z-x C02as (32)

Only for constant cross sections can expressions (30)-(32) be com-

bined to give a current of the form

+ 2
F1 " -?• • L• asO + Tu` P2 aSO 6+ 7  Y 1 (33)

8



In the general case, we must use eqs. (25), (30), (31), and (32) to

give the expression for J. J is, of course, taken to be continuous.

We obtain the truncated SPM equation in the form

"al + a 62 1 .-= 0 (34)

where

ao = a - as (35a)

a, = Cos (35b)
- (35b)
Ia2 = C2 0 s. (35c)

Because the J term was found not to improve the results, the

approximation was actually cut off after J

9



C. Interface Conditions

The conditions at an interface must be continuity of 0 and

J, for all lethargies. It is necessary to see how this works out

in a difference approximation.

We assume an interface at x = 0. Then

-a 0+1a0O, x A 0 (36)

We will denote the value of J at the interface by Jo0  If 5+ is

the x-interval to the first mesh point to the right of the interface

and 6. that to the mesh point to the left, we have

Jo J- + 5.J. (37)

where

J_ = value of J at the first mesh point to the left

'. = average value of • in left-hand interval.

The mean value of J in the left-hand interval is

_ = (J + J-). (38)

Then

J -Jo 2
-Jo) (39)

Similarly,

2+ (Jo " •" (40)

10



If ai+ is the value of ai to the right of the interface and a .

that to the left, we have

62
-6..- 0 6i.•0 + - 6_a + 2(. - J 0) " 0 (41a)

-q+°o+- ru 6+÷ 0 + 6+2+0 + 2 (Joo- ) 0 -(41b)

Defining

aW6+li++ 6.ai. 42
6+ (42)

and adding the two equations (41 ab) we have

-a 0- (:T - .) = 0 (43)0•• •u•• u 2 + -++6

Equation (43) is precisely what we have within a single medium.

Thus we can treat boundary points the same as any other points if we

define the ai at the boundary by eq. (42). The cross section-

dependent constants in J+ are those appropriate to the right-hand

medium and those in J_ are those appropriate to the left-hand

medium. We can write

J=y a 3 0 4 a 4 -y~ a3 0 (44)

where
1 1 =3 1 C

'Y3 =•-vo a a3  F 02 s

1 4 a (45)
y4  a c, 12 s

v1'Y5 M 1•
=V0

I 11
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Then in our difference approximation

a3+ 0+1 - a3± 00 Y4+_ a4 + 0±1 4+ 0

a 3+ 03+1 a 3++

"Z-u '/5_+ B+ '(4 6 J

where

00 0(x 0)

0±1 - 0(x + 6+). (47)

Expression (46) is to be substituted into eq. (43).

Note that J is not assumed continuous across the boundary

+ - > 0 for 6+ - 0, 56 0, but for a finite mesh, we do not use the
J+ +

continuity of J as an explicit condition.

D. The Constants Cmn

We had

Cmn (x~u) = m (x, u,:v) Fv2 1 j2 0  nd

mnXu)= 2TF• M,(41 xU) dýj L(v) as( U'V) L; -- oo: o

Cmn~xos (x, U)

21 -1 o0  (18)

We assume that within a given medium Cmn is independent of x and

further, that M(.Ix, u) is independent of u.

Let

=v + 4I_42 ýJV2 cos 0 (48)

We can expand

En b nP ( (49)
1=0

12



Then

o d =X but JP ,(V)d 0 -

n7 z bA P2 (4•)P2 (v). (50)•=0 0

1-0

The second equality arises from the addition theorem for Legendre

Polynomials.

We use also the inverse of (47):

P• tl)=X ak k (51)
£ k-O

a n d d e f i n e - 2 M(

< -n 2j M(•)•nd•~. (52)

The differential cross section as a function of the cosine w

of the scattering angle in the center-of-mass system is expanded as

a (u)
as (us,) -) Z (21+1) f2(u)P2 (co), (53)

1-0

where as(u) is the total macroscopic scattering cross section at u,

from which it follows that fo(u) - 1. The relation between v and W

is such that

a (u,v)dv - as(u,aw)do. (54)

13
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Thus we can write

2 1 n r krmn=2I M (0)d4 L(v) 7 z (221+)f (u)P,(W)cdw2Tz f_ z ar -z VP
1=r= --O k= p=O rp

-1 -1l

n r r k7z (21+l)f (u) Z b n a a a rk<L >J2  (55)
-=0 r= p=0 rPk=O

where

J2pm =5 Lm (v)vPPI(w)d•. (I6)

-l

For hydrogen the lower limit of the integral over c is zero.

We can write

CMO y- (2()fI O57)1-=0

vm z (2J+l)fjJjlm (58)
2=0

2 ( 3 J1 2m- Jlom I J2omm J12m
C im2 > y- (21+1)f 2 I + (y (21+1)f2S 2 2=0 12=0

2 2 io
Cm0 + Z (1Ipf I z12 (59)

The sum over I actually will be cut off at some value I - L. For an

isotropic flux, <g2> = and

Jp is evaluated recursively in the code

14



E. The Calculation Method

We use three-point difference approximation formulasi for

both first and second derivatives. For the first derivative we have

a weighted average of the forward and backward derivatives, thus:

i~- {i kA A+( •i)0k - •- "k"(60)

"= ++ .1 kk~_l + Ok_ "

where

= value of 'u at u

Z k atU k'

Ok = O(uk)

A+ = Uk+l- uk

A- = uk - ukI

For the second derivative we take a difference quotient between

the forward and backward first differences:

-l2 [Ok+l-Ok Ok-ok-lj

2 0k~ +~~- Ok + LA_0kl] (61)

Suppose 0jk is the flux at position mesh point j and lethargy

mesh point k. Let us define

15



1+ A A+

2 2
Ak. =1(A++A_) Z-(.. ) (2

2 2
+ +(6++ ) 5- 8.(6++ 6-T

where

5+ = x;:+l - X.

5- =x. j- x
Thenj-

I jk = O j,k-I4 (VI~ TLOjk + Tk..Oj,k.. (3a

2
TU1 k L+O~l (+ -) Oj - Oj k-1 (63b)

-4T jk + Oj+l,k (-ý 'k -) Ojk + k- Oj1l,k(6)

a W2 f 0 +l,k01 0jk- 0j 1ljk
TOx rjk ra+8 LY[k+ 8+ - ]i-

- +-Yk+ 0j+l,,k - 0~+ -Yk4+ '-"'k-) 0jk + '-k0-~

(63d)

-y+and -y-are respectively the values of -y at lethargy k in the

rght-and left-hand intervals.

16



The n's, i's and V's are functions of j and k, though we omit

the indices for convenience. Our equations become

1 1
- apq 0 j+p,k+q = Sjk (64)

p=-1 q=-1

where Sjk is a source term, if any. Here the SPM differential equation

can be written

"•-x• 73  75 •x 3 0-=S, (65)

where
o = (66a)

T(- =x C, 0 Tx 0s-uC

i' C1 a (66b)

a2  i ~C 0 5 (66c)

a3  (66 d)

a4  = C1 2 sa (66e)

3 1

a i (66f)

a 1 (66g)

75 Vl= C (66h)

0

4 17

Cy(6g



The a's and 7's are constant within each region'. The a that
pq

appear in eq. (71) are determined as follows:

a ) X 3 4 4 + 5 3 1+
a~l,_ 1 =-- -q '+ 3Yk+ (y4+ akI,+ 3k_1,+

=t . -_ 3 .4 4 5 3
,+.k+ ± *Yk+ k+l,_+ + *k+l,. ak.+,+

i 2ao.+l - -T.+ 1k_+l + a. k.+l - a_,.,.+, -a,,,_+,

a 3 - +- + -. 53
0±1o 'Y+ + ~ + a1, k1 -akalo= •,+7+ L++ (++~ y,) (7 ±+_yk++7+ _

0o 2
a0,0 -a kc + %TL + TOc2 -k (ý±., + ý- 2k - , -a1,0

(67)

If we are not at a boundary point and if the spatial integration

mesh is constant in each region, then

al,pq a-l,q (68)

To solve eq. (64) we use a line relaxation method. The solution

goes as follows: Suppose we want 0 jk' 0 e j e J, 0 , k • K. An

initial guess 0()is made for at all interior mesh points, i.e.,Jk jk

for 1 K j < J-l, 1 < k < K - 1. The conditions that the flux

vanish at the boundary are given by the expressions

0jK = 0 0 j J (69a)

kok = 0 P 1 K k K K (69b)

OJk - 0 1 < k k. (69c)

0jo is prescribed.

18



Given an estimate of the flux for lethargies (k-l) and (k+l),

we can get a new estimate for lethargy k'by the relation (64).

Then in the line relaxation procedure we get from eq. (64)

1

aJk (i) (i) (70)
p=_l p j+p,k 

(7

where

( 0 i - 1 ( a-1j+pk+l (71)
jk =pjk 1 l p,- 1  j+p,k-- P_ I •0  kl

We have put indices j,k on the a-coefficients for explicitness. A

superscript (i) represents the th estimate of the flux. We start

with k=l. 0i) is then just the prescribed flux at u = 0. For• j+p,k-i

k=2, •(o) is the initial estimate. Thus g(')can be determined from•j+p,2 2

eq. (71). Solving eq. (70) then gives . The procedure is then

repeated with k=2, etc., down to k = K-1. We now have 0jk everywhere.

The process can clearly be iterated to give successively higher

approximations. It can be shown that if the process converges, it

converges to the correct answer.

The relaxation procedure could as easily have been carried out

along lines of constant x. The equations that then replace (70) and

(71) are

i ajk 0 (i) - f(i)

q=-, oq j,k+q jk

(i)k S 1 jk U-1) qj Mq=Z_ a1,qq j+lk+q - a1 j ,)k+q (73)

19
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We use row iteration, although a column iteration or alternate

row and column iteration are other possible procedures. Eqs. (70)

and (72) are of the form,

antn-i + bn *n + cn *n-i = Qn ,0 < n < N. (74)

Eq. (74) is solved by use of two auxiliary parameters Zn and Pn

which are defined recursively as

z - - cn (75)
nb nanZn-l

Qn-an Pn-(

n + a(76)

with

Zo- Po 0. (71)

Then

On Pn + Zn 0n+l" (78)

Thus we have Po' Zo" Given Pn-i' Zn-l' we can compute Pn' Zn by

eqs. (75) and (76) out to n = N-1. 0 N is known. Given On+l' we

can compute 0n by eq. (78), back to n-l. Thus the complete solution

is given.

In a spatially symmetric situation, we take J = 0 along the

plane of symmetry, with -J < j < J. Symmetry implies that Ol,k- 0 -l,k

and that al, a_, For relaxation along lines of constant

lethargy, we have to solve equations of the form (74) for 0 < n K N

with the added relation

ao*'- + bo*o + co0 l - Q0. (79)

20



But because of the symmetry, a° = c 0 and *-1  " Thus

QC 2ao0
-o = 1o b (80)

Comparison with eq. (78) gives

Qo (81)Po =5V--()
0

2ao0

zo = 7 (82)
0

*n can then be found from eqs. (75), (76), and (78) for 0 n < N.

Relaxation along lines of constant x can be carried out either

from N to 0 from 0 to N. However, for j = 0, eq. (23) becomes

Ifo 27- ok (83)

ok = Sok "q1 alq 0 l,k+q"
The ith estimate for Ol,k+q is used in proceeding from K to 0. The

(i-l)-t estimate is perforce used if we proceed from 0 to K.

21



F. Source Conditions

Assume we have a plane isotropic source 5(x)B(u) at u = 0.

For a uniform medium the slowing down density at u = 0 can then be

written
1

q(x) y a E1 (alxi), (04)

since everything that scatters slows down at the collision point.

a is the cross section at u = 0. If there is little absorption near

the source energy, q(x) is nearly constant except near x - 0. But

except immediately around u = 0, we have

q = •o0, (85)

where t is the mean lethargy increase per collision.

Thus the flux is given correctly several t-units and more from the

boundary if we take

0(xO) El(a lxj )" (86)

We use this as a boundary condition. It must be stressed that 0(x,O)

is not a valid approximation to the flux very close to u = 0. It is

the condition that must be used with the SPM equation to give the flux

correctly away from u = 0. With this normalization both SPM and age

theory reduce to the same asymptotic result for large u, as they

should.

At an interface xo we get the condition by assuming that the

number of neutrons slowed down per unit time from u=o between x0 -E65-

and xo+eo+ is given correctly by assuming that the flux at u - 0

22



is continuous and linear in the intervals (x -c6_,xo) and(xxox+ c5).

6_ and 8 are the distances from x to the next mesh points to the

right and left, respectively. The natural requirement would be to let

e = 1, but in order to get an expression which reduces to te correct

one when the media on the two sides of the interface are identical,

we let c approach zero. The precise condition at a single point L3

not especially critical, in any case. Thus we write for the slowing

down density

q(x) =a± El(js + + (X-Xo)I)., x 0 < x < x 0 + C6+

E E1 (Is - a_(xo0 - X) , xo-c6- < x < xO , (87)

where

a+ = total macroscopic cross section in interval x < x < +CD+

a- = total macroscopic cross section in interval x -C 6-< x < x0

s = total number of mean free paths between the origin and x

We assume also that

q(x) -- cr++(x) , x < x < xo + C6

- -.O.¢(x) , Xo-e5 < x < x (88)

Here

= mean lethargy increase per collision in interval xo<x<xo+e5+

= mean lethargy increase per collision in interval xo- E.<x<xo
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Then

(o + ,

q =~d # E1(s- (x 0yx)dy :;

S--.

Also

q(x)dx = Jo (x)dx + s++ (90)

X-C5- X o-e6- 0

Now in the limit e -> 0, we get by equating expressions (89) and (90)

1.~ E1 (s)(c,+6++ eo_.A.) = 0(xo) (E,+a+5+, + E•,_c.D),

or finally

Sea+5++__

.(x(S) O+•+d+ + • (91)
EI~~E 1(s)++ ab) ~O(ea~++e-

For an interior point, this reduces to

¢(%) ½ •~s)'(92)

as expected.

The El source gives a problem in a numerical calculation

because it is singular at the origin. The criterion we use to avoid

the singularity is that the total number of neutrons slowed down per

unit time from u - 0 in the interval -5< x ( 5÷ is given by a
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three-point formula in terms of the continuous and piecewise linear

flux 0(x) at u = 0.

Thus eqs. (87) and (88) hold, with xo = 0, s = 0, E = 1.

.= E1 (y) dy +l • , El (Y) dy = l- 2  +as l-E (' '

0%6

+ - -++

(93)

We have used the relations
j•EI (y) dy -- E2 (p) (94)

12 (0) = 1 (95)

E2 (p) = e -p El(p) (96)

Also,
0 0

q(x)dx - eo.0a(x)dx +5 a+ci+0 )dx

(97)
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Since by assumption, -6_ and 5+ are not-interface points,

0(t1++) q(y C-+,+)

and so equating the right-hand sides of eqs. (93) and (97) and

using (98), we have

0 -a6 -a+- + )
[ 2 - e + 0.6.E l (a_6.)-e + a+6+E1(a+8+ =

7(~a 5+ e+6+) 0(0) + I oB.E 1(CT-B)+E

or finally,
-a 6 -a 6

2- e + ½? __EI(o_)-2 ++ + 1+I+El(o+6+)
0 = _o + +a+_+ (99)

Eq. (99) gives the value we use for u = 0 at the origin.
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G. Boundary Conditions

Since we are working with an equation:essentially of the

elliptic type, we specify one boundary condit zion all around the

boundary. The computations use a rectangular rtuion (a<x<b, C<u<uc).

The source condition at u=O has been discussed. We use the condition

(X,uc) = 0 at the cutoff lethargy uc. It was shown in the previous

summary report that the precise condition at uc does not nffect

the solution except in the immediate vicinity of uc, ii 'ne condition

is at all a reasonable one. The present spatial boundary conditions

are that the flux vanishes at a and b. One could use instead

derivative boundary conditions, i.e., that j-- is equal to some

constant on the boundaries. This is, in fact, the condition on the line

of symmetry for the symmetrical case, where .= .

H. Inelastic Scattering

Inelastic scattering must be treated as an absorption followed

by a reemission at a lower energy, as in multigroup theory. It

presents two problems, one intrinsic and one purely practical. The

practical problem is that of time and memory requirements in the

machine computation. We get an effective source of strength

S(x,u) = o(x; u', u)0(x,u,)du, , (100)

where

a(x;u',u) - inelastic macroscopic scattering cross section at x

for neutron of lethargy u' to scatter to u, per unit

lethargy range about u.
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S is treated as an inhomogeneous neutron source. The appropriate

term in the SPM equation is fo' the first collision density of neutronz

whose source strength is given by S.

S(x, U) G (u) El(jSJ) S(x,,u)dx,,(01

where
x

s= S (u,ux")dx"I.

Just as in multigroup diffusion calculations, however, we will not

take account of the transport of these neutrons between the point of

inelastic scattering and the point at which they next collide. That is,

we take

* 0o(x,U) = S(x,u). (102)

This approximation eases the very considerable computation that would'

be required to use eq. (101).

The intrinsic problem with inelastic scattering lies in the fact

that any source in the interior of the u-interval, i.e., for u > 0,

can propagate in both directions in lethargy. While the propagation

to lower lethargies is damped fairly rapidly with decreasing u, this

part of the contribution is certainly unphysical. Further, the flux

is not correct even above this interior source lethargy until about

an interval Auf t away. It is certainly true, however, that if the

flux inelastically scattered to an interval whose width is of the

order of • is small compared to that slowed down by elastic scattering,

the error is small. That is, in that interval the error is small by
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hypothesis, and in any case does not propagate very far. The latter

property implies that the error is not cumulative, but only local

so that it is limited in magnitude everywhere.

It should be remarked that these difficulties are present in

part in ordinary multigroup theory whenever the relation. q = too is

used to connect the slowing down density and the flux.

The code takes inelastic cross sections in two forms: either

as the cross section Oin(ut,E) at u' per unit final energy about E,

tabulated as a function of u' and E, or as an excitation cross section

fin(u',Qi) tabulated as a function of u' and the excitation energy Q..
In the available tabulated inelastic cross section data f in(u',Qi) may

be available as interpolated in the initial lethargy directly from

experiment, for the lowest excitation levels Qi" At higher incident

energies one resorts to calculated cross sections in the form a in(u',E).

In general, fin(u',Qi) may not sum precisely to the total observed

inelastic cross section at u' because of experimental inaccuracies.

We therefore define the normalized excitation cross section

a in (u)(1 
3gi(u) = fin(u'Qi) in(u,Q) (103)

i has the required property that

Yz gi(u) = ainCU). (104)

ainm(u) is the cross section for neutron production by inelastic

scattering. In terms of the (n, n') and (2, 2n) cross sections it is

ain(u) = an,n (u) + an,2n(u). (105)
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Since ain(U',E) is computed while ain(u) is measured,

integration of ain(u,E) over E will not in general give a (u).
in in

Again we must impose a normalization. In the code, it is assumed

that a. (u',E) is linear in E between each successive tabulatedin
values. It is further assumed that if E takes on the values Ei

and if there are P values of i in the tabulation, that

EP+l =0

ain(U',O) = 0

Ei+1 < Ei

ain (u',E) =0, E > E1 .

Then we can get a normalized cross section
ain(U')

am' (u',E)= ain(u',E) a-- inP u(106)1 nZ U ,Ei)l- inUEi+)l (Ei-Ei+I)

i=l(ai E.)+ a. (u'

In terms of gi and ain', the differential inelastic neutron

cross section is

a(u',u) E ain (U',E) u k,1

Z 7 gi(u') 5 (E'-E-Qi)E, u' > uk (107)

Here uk is the smallest lethargy at which fin(u,Qi) is given. For

uk2 < u' < uk , where uk2 is the largest lethargy for which we use

the an (u',E) data, the codes takes
I I

a. (u',E) = ai(uk ,E). (108)
in in 2

Eq. (107) assumes that the excitation energy Qi equals the neutron

energy loss in the c.m. system. While not strictly true, this is
an adequate approximation for our purposes.
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Elsewhere we interpolate linearly in u', for both ain(U',E) and

gi(u')•

In eq. (107),

Note that
-u

Q• < Eoe

Substituting eq. (107) in eq. (100) and using eq. (107), we

have, dropping the spatial variable x,

5(u)
s(u) =sa(u' ,u)0(u')duo

so

- a(u',E)E 0(u')du', U <

= 5 u n (u',E)E 0(u')du' + Z E gi(u) 6(EE -Qi)(u' du,

ini
0 3 Uk1

u > Ukl (111)

In our mesh scheme, the lethargy takes on the value uk, and

integration is by the trapezoidal rule. Let us define
E 0 ¢10u~ ' ¢uiI in Uil E) (Ul-u i

Gk Ek k -l 4 inU kn(ui+l k)) ' -'

(112)

with

ko k uk <Uk

uk uk
,uk UkI (13)
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"k and uk are relatced by the standard expression

Ek Eoe

Then

0

S0 kar(u E)E0(u')du'ink 0 :4

Also,

E 9gi(u')6(E'Ek-Q,)O'(uI)duI

Ek EE E

g (i E+Q ) O(In E1(Q 0 Ek+Q H(Ek EU __ EE -Q)(115)

H is again the step function defined previously:

HQ~) =1,>0

=0, ~ <0. (3)

Let

a- k+Q 1+ S e Uk (116)
Ek E

and

V Ik n aJk (117)
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Then
Eo Eo Ek

In -0 In + in - k(118)
Ek+Qi k E+Qi Uk-Vik"

Substituting eqs.(114) and (115) in eq. (111) and using eqs.

(116) and (118), we get finally

S(uk) Gk+ (Uk-Vik)H(Ek-Ek-Qi). (119)

Eqs. (113),(109a), (3), (116), and (117) define all the parameters.

Eq. (119) holds at every spatial mesh pointj in the inelastic scattering/

medium.

To determine what value of S(uk) to use at a boundary point of

an inelastic scattering medium, let us consider a situation where

there is one inelastic scattering medium to the right of spatial

mesh point j and another to the left. Then we assume that the total

source of inelastically scattered neutrons is represented as being.

continuous at x. and linear between xjI and xi and between x. and

x j+I. Thus

xj +I

x u[Sj - 1,Sk + T Sjk+ Sj+lJ = S(uk+)5++ S(uk.)SJ

j-1 "(120)

Here

Sjk = S(xjluk). (121)

and

Sj±l,k S(uk+). (122)
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Then

5+S(u,+) + 5 S(uk_) 12Sjk 6 + + 6 (23

In the spirit of the derivation of t.e l.ux at an inziz face for

eq.(1 2 3) should hold not for the do:-s1.ty S of Z' n .'.atca;L y sc:t'-- .i .

neutrons, but for the cross sections oa(u,E) and gi(u). However,

prescription (123) is much simpler. In addition, the overall error

is small, probably much smaller than the error involved in the

assumption (102).
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III. Results

A. Carbon

Comparisons were made of SPM results with those of age

2theory and of a method due to Kaper. The medium was carbon with

an assumed constant cross section. There is no absorption.

The flux given by age theory can be written

-x2

(X u)

Here the geometry is that of an infinite plane source of strength

S(x, u) = 5W 5(u)

with no first flight correction.

T is the neutron age, given by

= U

3ar

The age theory solution is tabulated in Table I.

Kaper2 has developed a treatment which is essentially a

consistent expansion in powers of l/A, valid also for variable

cross sections. Since one can look on the SPM as an expansion in

powers of l/A, though not a consistent one (since it gives certain

higher order terms), it is of interest to compare the two methods.

Kaper has given results for the first order solution; i.e., that

good to linear terms in 1/A. The SPM equation contains in addition

the terms in I/A 2 and certain, but not all, higher terms. For

carbon (A = 12), the differences should not be great.

35



For the comparison we use Kaper's solution including

first flight, that is, with a first flight correction, normalized

to the age theory results at Zx = 1, u = 15. Of the points given

by Kaper, this is the one for which age theory should be best

(small x, large u), and so the results were normalized accordingly.

This solution is shown in Table II.

We have two sets of SPM results for this problem. Both

used an El source. One, given in Table III, is the solution of

the third-order equation. The other, shown in Table IV, is the

solution when the third-order terms (i.e., y4 and 'Y5) are assumed

zero. Note that the effect of the third-order terms in this

problem is negligible.

In comparing the solutions given in Tables I-III, we

note that agreement is very close at smaller distances, but for

larger values of x, the SPM solution is flatter - smaller for large u

and much larger for small u - than either the age or Kaper's solu-

tion. Certainly the increase for small u is an improvement. The

differences for large u are not great and it is not clear whether

or not they are significant.
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TABLE I. DIFFUSION THEORY (A - 12)

0 5a

¶ Lx
2 5 8 10

1.06 0.726 0.053

3 0.663 0.585 0.244 0.048 0.010

5 0.522 0.484 0.286 0.108 0.044

8 0.417 0.398 0.286 0.156 0.089

10 0.374 0.360 0.277 0.170 0.108

12 0.342 0.331 0.266 0.177 0.122

15 0.306 0.299 0.251 0.181 0.134
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TABLE II. KAPER'S APPROXIMATION 2 F0R FLUX (A 12)

uý 1 2 5 8 10

1 1.01 0:.661 0.073 -

2 0.639 0.569 0.227 0.048 0.010

3 0.507 0.479 0.271 0.108 0.037

8 0.410 0.388 0.276 0.154 0.078

10 0.364 0.350 0.264 0.168 0.098

12 0.335 0.324 0.258 0.176 0.108

15 0.306 0.287 0.236 0.181 0.128
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TABLE III. SPM FLUX (A - 12) - WITH THIRD ORDER TERMS

1 2 5 8 10

1 1.07 0.760 0.098 - -

3 0.676 0.605 0.280 0.070 0.020

5 0.534 0.499 0.313 0.131 0.053

8 0.426 0.408 0.302 0.165 0.079

10 0.381 0.368 0.286 0.167 0.083

12 0.347 0.336 0.267 0.162 0.082

15 0.305 0.296 0.240 0.149 0.076
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TABLE IV. SPM FLUX (A - 12) - WITHOUT THIRD ORDER TERMS

u• 1 2 5 8 10

1 1.09 0.728 0.096 - -

3 0.691 0.611 0.270 0.069 0.020

5 0.541 0.504 0.309 0.127 0.051

8 0.430 0.411 0.301 0.162 0.077

10 0.384 0.370 0.285 0.165 0.082

12 0.347 0.337 0.267 0.161 0.081

15 0.306 0.297 0.241 0.149 0.076
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B. Hydrogen

A number of problems were run for hydrogen, since the

ability to treat hydrogen was considered a major part of the

program. Some used an 18-Mev source and some an 8-Mev source,

with x- and u-meshes of various sizes. Results for 8-Mev sources

are not yet available. All of the 18-Mev problems failed. The

reason is important and instructive.

All of the 18-Mev problems included the third order

terms. Basically, they failed because a,,_, and a_,,_, (eq. 67)

were too large. al0could therefore be small and even negative.

If we were dealing with a delta function source, for instance,

i.e., a source of unity at (j,k) = (0,0), where j and k are

respectively the x and u-indices, this would imply that 0(1,0)<0.

This is obviously inadmissible. The situation with the E, source

was somewhat more complicated, but fundamentally the same. Not

only were some fluxes negative, but the error propagated from

iteration to iteration and the iteration procedure rapidly

diverged. It should be remarked that a,,_, and a l.1 can become

too large only in the case of variable cross sections.

The conclusion from all this is that if the cross section

variation is too great, trouble can be expected from the third-

order terms. This bears on the problem of treating resonances.

If we had hoped to improve on the second order equation by adding

third-order terms, one must be extremely careful with variable

cross sections. We have not been able to deduce any real rules

for predicting when the third-order terms help.
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C. Modification of Diffusion Theory Current by SPM

To see how the additional terms in the SPM equation

modify the diffusion theory expression for the current, we have

two procedures. In one, we can assume that the .change from age-

diffusion theory is a small perturbation and apply the derivatives

in the additional terms to the age-theory solution. In the other,

we look at the ratio of the additional terms in the difference

expression for the current to the diffusion term for one of our

numerical solutions. We will consider both methods, for a medium

with constant cross section and no absorption.

The age-diffusion solution is

2

with
u

The SPM expression for the current *in a constant cross

section medium is

J - _f3  "737 - (y40(4 + 7y5 q3 ) xu]

We are then interested in R, the ratio of the additional term

in this expression to the diffusion term.

'R - K3 X u )4
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In our case

740u+Y5*3 •, V C1 2  v1

<3r o 02 =-o

for an "isotropic flux.
We take derivatives of the unperturbed age theory

solution
. 2

1 1 x2
In In I(o• - ½n (4r) In ¶-

2 2

J1 x

7= =O. 1549

2=

0 .3 ý - O. 0789 (

n 3aRa 1~+~ - +

3o a 2 T 7r T-

3a 0.04953

an d 0. -1026



We compare this with the numerical approximation, Rnums

in which the derivatives are evaluated by differences from our

numerical results. The results are shown in Table V.

TABLE V. EFFECT OF HIGHER ORDER TERMS ON THE CURRENT

x(mfp) u Ranal Rnum

2 1 0.111 0.108

2 2 0.0683 0.0667

2 5 0.0304 0.0299

2 10 0.0157 0.0098

5 5 0.0197 0.0194

5 10 0.0130 0.0075

10 5 -0.0188 -0.0201

10 10 0.0034 0.0022

We note that except near the origin and for small

lethargies the SPM correction to the current is small - of the
order of a few percent or less. Where Ranal and Rnum differ

appreciably, the correction is negligible.
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IV. Operating Instructions - SPM Code

A. Changing Tape Designations

The 3 magnetic tapes required by the SPM code are assigned
by a small subroutine called CHANTP. The copy of the SPM deck
issued at the time of this report defines the problem input data
tape to be logical tape number 2, the output tape to be logical
tape number 3, and the tape which stores complete nuclide data
for a series of nuclides to be logical tape number 5.

The tape designations may be inconsistent with the monitor
system of a given 7090 installation. Therefore a simple process
for making the necessary changes has been provided. The subroutine
CHANTP is listed below.

SUBROUTINE OHANTP

(Common, dimension, and equivalence statements)

NUTAPE = 5

KTIN =2

KTOUT = 3

RETURN

END (l,0,0,0,0,0,1,0,0,0,0,0,0,0,0)

Statements of CHANTP subroutine

KTIN defines the problem input tape, KTOUT indicates the
output tape, and NUTAPE denotes the nuclide data tape. To redefine
tapes for SPM:

1. Punch the proper logical tape number in the 3 statements
which define KTIN, KTOUT, & NUTAPE,

2. Remove the old binary CHANTP program and

3. Recompile CHANTP (and possibly execute a SPM problem).

The use of the new binary CHANTP subroutine in the SPM binary
deck or tape makes the code usable at the installation.
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B. Operation Instructions for a Problem Run

1. Since most 7090 installations will accept Fortran codes
only when under monitor control, only one provision (see below)
for console control of the SPM code has been made. It is generally
necessary to provide the 7090 machine operator with only

a. the SPM code in card deck or magnetic tape form,
b. the input data, usually on cards, for the series

of problems to be run,
c. the nuclide data storage tape (NUTAPE) which

generally will not be written on.

Sense Switch 6 must be up. In the usual case nothing further

can be done by the user of the program.

2. Console Control of the SPM code

If sense 3witch 6 is depressed the code will stop after
computing and output~ing a complete array of fluxes. The iteration
number of the flux computation loop will be printed both on-and-off
line. This console operation should be used only when time con-
siderations indicate that the problem being run should be terminated.
Depressing sense switch 6 will allow the program user to obtain all
information available concerning the last flux iteration at the
time the problem was stopped. The program user may then alter the
input of convergence conditions so that the further use of sense
switch 6 will become unnecessary.

NOTE: In the following input table we use the following definitions:

dl a_, 1 , d 6 = al, 0

d2 = a 0 . d7 a a 'l

d3 na.-. l1 d8  aoI

d 4 o- a,0 d9 aial,

d a5 a 0o0 d10 S jk

where the apq and Sik are those in eq. (64).
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The columns described refer to the 72 columns available on a
standard IBM, punched card.

Input Data for SPM Code

GeneralCategory No. Description Format Specific Input Quantity

1. Titles and (12A6) Date in columns (1-12)
problem I A problem identification
Identification number in columns (13-18)
Data Any comment in columns (19-72)

This data is printed in
2. output and as page headings.

2. Fixed point (2413) MXIFL,
or integer Maximum number of iterations
input data: before problem terminates

itself. It is placed on the
Note that first card of category 2
blank columns Columns (1-13)
are treated
as zeroes.
Hence all KLIMIT,
integer data Maximum number of lethargy
must occupy levels included in convergence

?right hand tests, Columns (4-6)
columns of
their fields

SJ2,
the number of spatial points,
including boundaries,

. Columns (7-9)

SK2,
the number of lethargy points,
including boundaries,

I Columns (10-12)

S~IPCY,
the number of iterations on

I the flux per printout of
abbreviated convergence data
(see output description).

I Columns (13-15)

IMALP,
the number of flux iterations
at which an indication of

" "Excessive Iterations" is
printed out both on-line and,
off-line and beyond which all

47 flux convergence data is
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Category No General I"C o Description Forat Specific Input Quantity

2. printed out; the problem
continues, however.
Columns (16-18)

MKO,
the mesh size of the lethargy
output printout. Though the
computation is carried out in
its latest stages for all of
the K2 lethargy points, output
occurs for only those points
R=l, I+MKO, ... I+nMKO, ... K2.
Columns (19-21)

the mesh size of spatial point
output printout. Only the fluxes
corresponding to j=1, l+MJO,
l+nMJO, ... J2 are printed out.
Columns (22-24)

IDEBUG,
an indicator.

If IDEBUG=20, there is no nuclide
data storage tape. OptT-'n 5,
category input then computes or
obtains the necessary nuclide
data.
Columns (25-27)

MMT,
the number of entries in the mesh
size table MTAB (see below).Columns (28-30)

MTAB(I), I-l,MMT.
A table of the mesh sizes to be
used successive in the compute-
flux-array computation. The
table consists of pairs of mesh
sizes for space pt. mesh, and
lethargy pt. mesh, respectively.
Coarse mesh pairs, monotonically
decreasing, precede the finest
mesh size pair (,l)which are then
followed by two zeroes. By fat
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General
Category No. Description Format Specific Input Quantity

2. table of MTAB, where MMT-4, is
1, 1, 0, 0. Nextr(MMT x 3
columns)

MIFLAG,
the number of entries for the
input table of flux arguments
data (see table ALPLAY in
category 3 input). Next three
columns.

KBGIHS,.
the number of the lethargy point
at which the arbitrary input of
the D10 (inhomogeneous source
terms) begins.
Next 3 columns.

1 KIST,
the number of the last lethargy
pt. at which there will be
arbitrary input of the Dterms. All lethargy poiARs

from KBGIHS to KIST will have
this input whenever KBGIHS • 0.
Next 3 columns.

INONU,
the number of geometrically
defined regions, each of con-
stant nuclear composition.
Next 3 columns.

ID 10 FS,
[ If this indicator =0, fission

is treated as absorption. At
this time the indicator must be
zero.
Next 3 columns.

r

ID 10 IE,
If this indicator - 0, inelastic
scattering is treated as
absorption.

At this time this indicator
must be zero.

49 Next 3 columns.



General
Category No. Description IFormat Specific Input Quantity

2. ISOUR'1
If this indicator - 0, a table

!,will be required in category 6
input. This table is the
spatial source at the first
lethargy level, k-l.
If this indicator > 0 an E
source (as described in thU text)
is computed with its origin at
the spatial point x- 0.0.
Next 3 columns.

ID 10,
If this indicator - 0, there is
no arbitrary input of D sources.
If this indicator 0 an Lput
table FIST, category 7, will
load D sources directly from
input isr each lethargy level
from KBGIHS to KIST.
Next 3 columns.

iIROCO.

If this indicator - 0, the compu-
ration of the flux array will
proceed by row iterations only.SIf IROCO - 0, the flux computa-

tion will proceed alternately
by row and column iterations.
Next 3 columns.

i[ISYMM
{If this indicator - 1 the flux

configuration will be computed
symmetric about the left edge
of the array (usually x -O0).

SThis condition of symmetry applies
only for IROCO - 0, i.e.
row iteration only used in the
computation of flux.

SNext 3 columns.
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General Format Specific Input QuantityDescription

3. Floating 9E(8.2) ALPLAY (I), I - 1, MIFLAG.
Point This table defines the spatial
Input Data and lethargy coordinates, for
Each Single the finest mesh, of the flux
entry array. The space defining
occupies 8 data is xl, Ax1 , x Ax2, ..
columns. XINONU, AxINONU, xINONU+I, 0.0.

Each input is the coordinate ofth
entry of mthe
the form e lefthand edge of the mth physi-
.fff x 10e cal region; Axm is the constant
is expressed interval within that region.
(.fffE+ee) Spatial data is terminated by a
in thed8 constant interval distance-0.0.
column field. The mesh point distances give
(A certain the points for the finest
economy is spatial mesh: hence there are
permitted by J2 such points. The table con-
Fortran in tinues with the beginning entry
preparing E of the lethargy coordinates
format (usually 0.0). Then follows the
Floating constant Au, the maximum
Point input lethargy, and the indicator
numbers, value 0.0. With 1 spatial
See ITM region, therefore there would
RSfeence be 8 entries or 64 columns toReference

this table. Where INONU = no.
7090 FORTRAN of regions, use next 16 INONU +7090 FORTRAN
PR.OGRAMMING 48 columns.
SYSTEM p.45, E,
bottom.) criterion for flux convergence.

The maximum residual obtained
from the comparison of each old
flux to the newly computed flux
must be less than this value for
convergence to occur. Next 8
columns.
El*
E is a very small positive
number. The number of flux
values, whose absolute value in
any given iteration is smaller
than El, is counted and stored
in NCON (location 531518). Next
8 columns.
ENZRI
The energy at which lethargy
u = 0 for the particular problem.
Next 8 columns.
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Category No. Description Format Specific Input Quantity

3. FLI
If FLI > 0, all values of the
flux ta'Fle are initialized to
the value FLI.
If FLI < 0, the flux arravj,

k is initialized to e k (xj
Fit is usually set equal to
zero. Next 8 columns.

W is an acceleration factor.
If 0.i is the flux computed
Son tA (i+l)st iteration,
Si+l is replaced by(W0i+I
+ (l-w)0.). If w-l, this
procedurý gives nothing new
and the relationship is
skipped. Next 8 columns.

X0.
If XO > 0 the left edge
boundaiy of the flux array is
initialized to the value of
XO. If X < 0 the left, or
X , boundgry fluxes are read
iR by input. Next 8 columns.

iXN.
If XN > 0, the right edge
boundary of the flux arrayi is initialized to the value

of XN. If XN < O the right
hand boundary fluxes are read
in as input. Next 8 columns.

4a nuclide 2413 IELEW (I) I - 1,24
identifica- The nuclide identification
tion for numbers for all nuclides
region within the first spatial region

are read in on.a single card,
in numerical order. These
numbers correspond to nuclide
data stored on tape NUTAPE,
the nuclide data storage
tape. Each entry occupies 3
columns. This table takes up
n3 columns of one card, when
n-number of nuclides within
the region of computation
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General k oi nttCategory No. Description ormatSpecific Input Quantity

4b density of 6(E8.2) DENSIT(I),
nuclides ithe density (gms/cc) for each
for a given ýof the nuclides above.

j region !This pattern of a single card
rof IELEW data (4a category
1card) followed by the corres-
Sponding density card(s)
ý(4b category card(s))is
:maintained until all INONU
regions of the problem have

'their composition defined.
Each entry has 8 columns.

!This 4b table occupies a
%total of n8 columns, where
ýn=number of nuclides within
Ithe region being computed.

5. optional
input.
IDEBUG-20
indicates
there is no
nuclide data
storage tape
and we therefore
"read category'
5 input.

5a IDEBUG is a (E13.7, IENZR,
Icategory 2 16,Il) ýthe energy corresponding to

indication zero lethargy for the lethargy
argument table of the cross-
section data. This must be

'the maximum energy for the
cross section table. First 13
columns floating point form.

!NOXSAG,
'the number of entries in the
lethargy table corresponding

ito cross section input. Next 6
columns, fixed point.
IBUGI,
an indicator. Next column only.
If IBUGI-l we have constant
cross sections. Therefore

;we read aOJal.a2, 4,y3,y4 and
Sy5 tables directly.
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General
Category No. Description Format Specific Input Quantity

5a Each of categories 5b, 5c, and 5e
Sthrough 5-1, require a table of

* numbers to be prepared for input.
Each table entry is in floating
point form where a Wber in the
form + .ffffff x l1T0 is ex-
pressed + .ffffffE+ee. It is
placed to the extreme right of
the 13 column field reserved
for it,. One IBM input card can
hold up to 4 entries. (65 columns).

5b 5(13.7) XSLEAG (1)1- 1, NOXSAG,
the table of lethargy arguments
for all cross sections. See
note following 5a, just above.

5c' Optional 15(E13.7) The following will form tables
input: if with constant values
IBUGI-I,
we have XSMATS(l) the total macroscopic
constant cross section columns (1-13)
cross sec-
tion input. ALFAO (1)value of aoCOlumns(14-26)
Thereforeread Input I ALFA 1(i) value of alcolumns(27-39)
5 . This ALFA 2(1) value of a2 columns(40-52)option is
valid only ALFA 3(1) value of a columns(53-65)validonly next card
if there ALFA 4(l) value of a4  card
is 1 region. 4columns (1-13)

sGAM 3(1) value of Y3 columns(14-26)

GAM 4(1) value of Y4 columns(27-39)
GAM 5(l) value of y5 columns(40-52)

XSEE 91) value of •- C 1•(I)
co umns(53-65)
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aGeneral

Category Description fFormat Specific Input Quantity

5c iOptional
Input. If
IBUGl # 1,
we have non-
constant
cross sec-
tion input
given in 5d-
5e. This
option per-
mits arbitraryý
introduction
of SPM
coefficients
without refer-½
ence to NUTAPEi
tape.

5d 17,3A6, INUCLNO,
2E15.6 the identification number of

the nuclide for which we are
reading in cross section data
columns (1-7)
NAME, a 18 character title for
this nuclide. Columns (8-25)
AW, the atomic weight for
this nuclide, columnf (26-40)

[USQ, the quantity <4 >
columns (41-65)

5e 5E13.7 XSMIT(I) I-1, NOXSAG
a or microscopic total cross
sections in barns
See note following category 5a

i description.

5f 5E13.7 XSMIS ( I=1, NOXSAG
5O, or microscopic scattering
cross section in
See note following 5a
description.

5g I (5E13.7) Cl0(I) I-1, NOXSAG
':SPM coefficient defined in text.

See note following 5a descrip-
tion.4

5h (5E13.7) C20(I) 11, NOXSAG
? •See note following 5a description.
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General
Category No. Description Format Specific Input Quantity

5i (5El3.7) C02(I) I - 1, NOXSAG

See note following 5a description

5j (5E13.7) C1 2 (I) I = 1, NOXSAG

See note following 5a description

5k (5E13.7) WVO(I) I 1 1, NOXSAG
See note following 5a description

51 (5E13.7) WVI(I) I = 1, NOXSAG
See note following 5a description
Note that if IDEBUG # 20, all
category 5 and 6 data are read
from the nuclide data storage
tape NUTAPE.

6 Optional 1(9E8.2) FLUX(I) I = 1, J2
Input. Fluxes at lethargy zero level,
If ISOUR 1  including corner points.
= 0, read J2 x 8 columns, with at most
the lethargy 9 entries on a card.

S0 source

7 Optional (9E8.2) FIST(I)
Input. If Arbitrary D10 sources. For
D010 = 1, each lethargy level from KBGIHS
read in
tables of (category 2) to KIST (category
arbitrary 2), inclusive, J2 (category 2)

D sources values of D10 j,k will be read

in, from xo to XN.

I (KIST-KBGIHS+I) sets of
(J2 x 8 columns)

8 Optional (9E8.2) FLUX(I)
Input. K2 entries of the left or Xo
If XO < 0 boundary values of flux 0

read in X starting from lethargy level K-l.
side (K2 x 8) columns
boundary
condition

9 Optional (9E8.2) FLUX(I)
Input K2 entries of the right or XN
If XW < 0, boundary values of flux,
read in starting from lethargy level K-1.
XN side
boundary
conditions
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VW SPM Output

The SPM output of results is initiated by a printout of
a) the names of nuclides, and b) their corresponding densities
in nuclei/cm3 in each successive region.

By a proper choice of the input indicators, IPCY and IMALP
(category 2 input), the SPM program may be set up to print out con-
vergence data, for each or any flux iteration number, in the following
form:

Line 1: (flux iteration number), (number of points tested for
convergence), (average residual), (maximum residual),
(j position of max. residual (space)), (k position
of max. residual (lethargy))

Line 2: (Bl, Minimum Value of Flux), (B2, Maximum Value of Flux),
(absolute value of maximum of (B2,-Bl))

At iteration IMALP and at completion of the problem by either con-
vergence or divergence, SPM prints out problem identification
comments. SPM briefly prints out why the problem ended. It then
prints the flux array requested by input indicators MKO and MJO
(category 2 input). The energy level and space position identifying
each element of the flux array is printed on each page.
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VI. GENUC - Cross Section Processing Program

A. Purpose

The purpose of the GENUC program is to produce NUTAPE

from microscopic cross section data. It produces also an edited

version of NUTAPE for printing. A printed record is necessary

for the operator to have in order to identify the various

nuclides. The following data are given on NUTAPE for each

nuclide. A, < 2>, UT ' S, C1 0 1 C2 0 , C0 2 , C12 , Vo, and vl. GENUC

has an option whereby C1 2 and v, can be put equal to zero. This

is equivalent to dropping the third-order terms. This option is

denoted in the following by y = 0.

All data thus collected for a given nuclide, along with

title information, are written on tape as a single record, in the

exact order SPM requires.

GENUC provides for the sequential storing of many

nuclide-data records on the same tape. A necessary restriction

of storage on one tape is that each nuclide must use the same

table of lethargy arguments. The lethargy table and title

information to identify this particular tape are found as the

first record.

B. Tape Unit Designations

GENUC consists of a main program and one subroutine

CHANTP. Because of the organization of the subroutine CHANTP,

the GENUC code, like the SPM program, may be run at any 7090

installation regardless of the standard input and output tape

designations of that installation.
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The GENUC code deck issued with this report uses the

logical tape units listed in the table below.

Unit Use

2 Input

3 Output, Hollerith

5 Output of nuclide-data, in binary form,

for use with the SPM program

The procedure for changing the logical tape designations that

GENUC uses is exactly the same as for the SPM code.

C. Input Preparation and Restrictions

An input deck for the preparation of a new data-

storage tape (i.e. when the input quantity N00NTP = 0) must

carry both a lethargy division table and its associated base

energy for u - 0, both of which will be maintained as a standard

for all successive lethargy-dependent variables on this tape.

When N00NTP > 0, the lethargy table will be assumed present

within the first tape record and the input deck need only con-

tain information directly related to the given nuclide. Any

number, NONUC, of different nuclides may be added to the tape,

with two restrictions: 1) GENUC provides no interpolation

facilities for non-standard lethargy arguments; and 2) the use

of the y- option (defining y to be zero or non-zero) remains the

same for all N0NUC nuclides. When the GENUC run is complete for

these NONUC records, the GENUC program starts anew. At this time

for the new run, the y option of course may be changed.
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GENUC DEFINITIONS

NONUC Number (Index maximum) of nuclides to be added onto
data storage tape

NOONTP The actual number of nuclide records on the nuclide
data tape. If 0, then we prepare a new nuclide tape.

IBUG Indicator for y option
When IBUG = 1, the tables C12(L) and WVl(L) are set
equal to zero for all lethargies L.

XSLEAG(I) Table of lethargy arguments for cross-section tables

with a N0XSAG number of entries.

NOXSAG The number of entries to above table, < 200.

NIDTAP A label, or title, to be printed out for identification
of a particular nuclide data tape

ENZR The base energy for which lethargy is defined as zero

NUCLN0 Number-label of a nuclide

NAME 18 Alpha-numeric character (3 cell) title for a nuclide

AW Atomic weight of the nuclide
USQ <2>

FL(KK,L) Legendre coefficients fI for the nuclide. Here
KK =e + 1
There are 7 separate such tables for KK = 2 to KK = 8
L is the lethargy index
Each such table has NOXSAG entries in it, corresponding
to the XSLEAG table of arguments

XSMIT(L) Microscopic cross-section in barns corresponding to
XSLEAG lethargy table, N0XSAG entries

XSMIS(L) Microscopic cross-section in barns corresponding to
XSLEAG lethargy argument table, NOXSAG entries
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OUTPUT OF GENUC PROGRAM

The First Record has

NIDTAP

NOXSAG

XSLEAG(I), 1 = 1, N0XSAG

Each successive record describes a distinct nuclide and contains:

NUCLNO

NAME 18 characters

AW atomic weight

XSMIT (L) aT

XSMIS(L) a scattering

C1O(L) (Note that •, defined in SPM text, is

C20(L) never distinct from C

C02(L)

* C12 (L)

VO(L)

* V1(L)

end of record

* We note that where IBUG -;(G1 input), the C12(L) and also the
VI(L) tables will be set equal to zero.
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